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ABSTRACT 

In this paper, we considered the semigroupOCTn 

consisting of all mappings of a finite set Xn = {1, 2, 

3, - - - , n} which are both order – preserving and 

contraction, that is mappingα ∶ Xn → Xn such that, 

for all , y ∈ Xn , x ≤ y ⇒ x α ≤ y α, and   x α −
 y α ≤| x−y| . In particular, we proposed a closed 

form formula for the number of idempotent 

elements in OCTn, (that is  elements ∝ satisfying 

∝2=∝). 
KEYWORD: Full Transformation, Contraction, 

Idempotent 

 

I. INTRODUCTION 
A Semigroup is a non-empty set which is 

closed under an associative binary operation. There 

are many examples of different classes of 

semigroups, but the classical ones are obtained by 

mapping of a set into itself. This is because self of 

a set play similar role in semigroup theory as 

permutations in the theory of groups. That is, every 

semigroup can be represented by a semigroup of 

mapping of  a set (Howie, 1995). 

Let Xn = {1, 2, - - - - , n}. A partial 

transformation of Xnis any mappingα: dom α  →
xn, , where dom α  ⊆  xn . The partial mapping is 

said to be a full transformation if dom α =  xn . 

The set of all partial, full and partial one – to – one 

mapping of Xn are semigroups under composition 

of mappings. These are respectively called the full 

transformation semigroup, the partial 

transformation semigroup and systematic inverse 

semigroup, and are denoted by Tn , Pn  and In  

respectively. These semigroups along with many of 

their interesting subsemigroups have been studies 

both algebraically and combintorially by many 

authors. These studies were pioneered by Howie 

(1966) in which he showed that a singular elements 

(non – invertible elements) in Tn are generated by 

singular idempotents in Tn (That is singular 

elements e ∈  Tn  satisfying e
2
 = e). Howie (1966) 

work drew the attention of many researchers for 

example Garba (1990, 1994a, b, c, d, e) (Ayik et al 

2005, 2008), Umar (1992, 1993, 1994, 1996) and 

the reference there in. Combinatorial result 

pertaining to order of semigroups have been 

studied in the semigroupsTn and many of its 

notable subsemigroups. Adeshola (2012) studied 

some combinatorial identities in the 

semigroupOCTn of all order- preserving full 

contractions.  

 

II. PRELIMINARIES 
2.1 Semigroups 

A groupoid is a pair  S, ∗  consisting of a 

non-empty set S and a binary operation * defined 

on S. we say that groupoid  S,∗   is a semigroup if 

the operation * is associative in S, that is to say, if, 

for all x, y and z in S, the equality  x ∗ y  ∗ z =
x ∗   y ∗ z  holds if in a semigroup S the binary 

operation has the property that, for all x , y, in S, 

xy = yx, we say that S is a commutative 

semigroup. If a semigroup S contains an element 1 

with the property that, for all x ∈  S, x1 = 1x = x 

then S is called a semigroup with identity, and the 

element 1 is called the identity element of S. 

 

Theorem 2.1 (Howie (1995)) A semigroup S has at 

most one identity. 

 Proof. If 1 and 1
1
 are elements of S with 

property that x1 = 1x = x and x 11 =  11x = x for 

all x in S, then  
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 1
1
 = 11

1
 (since 1 is an identity) 

 =  1 (since 1
1
 is identity) 

If S is a semigroup, which has no identity element, 

then it is very easy to adjoin an extra element 1 to S 

(to form a monoid out of S) given that 1s = s1 = s 

for all S ∈  S, and 11 = 1, it is then easy to see that 

S ∪ {1} becomes a monoid. Given monid, denoted 

by S
1
, is defined by 

 

 S1  =     
S                if S has identity

S U  1                        otherwise
  

 

andcalled a semigroup with identity adjoined if 

necessary. 

If a semigroup S with at least two elements 

contains an element O given that, for all x ∈ S,
0 x = x 0 = x = 0, then s is called semigroup with 

zero and the element 0 as the zero element of S. 

By analogy with case of S
1
, for any semigroup S, 

we defined  

 

 S0  =     
S                if S has zero

S U  0                        otherwise
  

andrefers to S
o
 as the semigroup obtained from S 

by adjoining a zero if necessary. 

 

2.2 Subsemigroup and Ideals 

A non –empty subset T of a semigroup S 

is called a subsemigroup of S if it is closed with 

respect to multiplication that is, if for all 

𝑥, 𝑦 𝑖𝑛 𝑇, 𝑥𝑦 ∈ 𝑇. 

If A and B are subset of a semigroup S, 

then we write AB to mean the set {𝑎𝑏:𝑎 ∈
𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵}. and that A

2
 = 𝑎1𝑎2  : 𝑎𝑎 , 𝑎2 ∈ 𝐴. 

The condition of closure in the definition of 

subsemigroup can be stated as T
2⊆ 𝑇. 

A subsemigroup of S which is a group with respect 

to the multiplication inherited from S is called a 

subgroup of S. 

 

2.3 Regular semigroups 

 An element a of a semigroup S is called 

regular if there exist x in S given that𝑥 𝑎 𝑥 = 𝑎. 

The semigroup S is called regular if all its elements 

are regular. That is if  ∀ 𝑎 ∈ 𝑆  ∃ 𝑥 ∈ 𝑆  𝑎𝑥 𝑎 =
𝑎 

 

2.4 Ideal and Green’s relations  

The notion of ideals lead naturally to the 

consideration of certain equivalence relation on a 

semigroup. These equivalence relations, first 

introduced by Green (1951) played a fundamental 

role in the development of semigroup theory. Since 

their introduction, they have become standard tools 

for investigating the structure of semigroups. 

 

If a is an element in a semigroup S, the sets  

S
1
a = 𝑆𝑎 ∪ {𝑎}, aS

1
 = 𝑎𝑆 ∪ {𝑎} andS

1
aS

1
 = 

𝑆𝑎𝑆 ∪ 𝑆𝑎 ∪ 𝑎 𝑆 ∪ {𝑎},are left, right and two – 

sided ideals of S respectively. These are 

respectively the smallest left, right and two sided. 

Ideals of S containing a. We shall call them 

principal left, right and two-sided ideals of S 

generated by a respectively. 

For any two elements  𝑎, 𝑏 ∈ 𝑆, we define the 

equivalencesℒ,𝑅,𝒥,ℋ 𝑎𝑛𝑑 𝒟 𝑜𝑛 𝒮 by  

𝒶 ℒ 𝒷if and only if 𝑆1𝑎 =  𝑆1𝑏 

𝒶 ℛ 𝒷if and only if 𝑎𝑆1 = 𝑏𝑆1 

𝒶 𝒥 𝒷if and only if 𝑆1𝑎𝑆1 =  𝑆1𝑏𝑆1 

𝐻     =          ℒ   𝓃  ℛ      𝑎𝑛𝑑    𝒟 =  ℒ ℴ  ℛ        
These five equivalences are known as Green’s 

relation (Howie, 1995). 

Propositions 2.5 (Howie (1995)) let 

1. 𝒶 ℒ 𝛽if and only if 𝛪𝑚 𝛼 =  𝛪𝑚(𝛽) 

2. 𝒶 ℛ 𝛽if and only if 𝐾𝑒𝑟 𝛼 =  𝐾𝑒𝑟(𝛽) 

3. 𝒶 𝒥 𝛽if and only if | 𝑖𝑚 𝛼 | = | 𝑖𝑚 𝛽 | 
4. 𝒟 =  𝒥 

As a consequence of this, we see that, the J-classes 

in Tn are Jr and the number of L – classes is the 

number of distinct subset of Xn of cardinality r, that 

is, the binomial coefficient  𝑛
𝑟
  =  

𝑛!

 𝑛−𝑟   !𝑟 !
 

The number of R-classes is the number of 

equivalences on Xn having r classes, that is, the 

stirlingnumber of the second kind 𝑆(𝑛, 𝑟) defined 

recursively as 𝑆 𝑛, 𝑟 = 𝑆  𝑛 − 1, 𝑟 − 1 + 𝑟𝑆(𝑛 −
1, 𝑟)with boundary conditions𝑆 𝑛, 1 = 𝑆 𝑛,𝑛 =

1, Also, 𝑆 𝑛,𝑛 − 1 =  
𝑛  (𝑛−1)

2
 and 𝑆  𝑛, 2 =

 2𝑛−1 

Therefore, a J-class Jr of Tn is visualized as an egg 

box in which the α - classes are the columns, the R 

– classes are the rows and the H - classes are the 

cells. The number of cells is 
𝑛
𝑟
 x S (n, r), and each 

cell contains r! elements. 

A subset Y = {𝑎1 −  − −, 𝑎𝑟}, of Xn is said to be a 

traversal of (or orthogonal to) an equivalence ll, 

which classes {𝐴1 ,𝐴2 ,−  −  − 𝐴𝑟 }, if each ai in Y 

belongs to a unique P -  class Aj. if Y is a traversal 

of  P given that 𝑎𝑖 ∈  𝐴𝑖  for each i, then, the map 

 ∈      =   𝐴1  𝐴2  − − − − − 𝐴𝑟
𝑎𝑟𝑎2− − − − −−𝑎𝑟

  

Is an idempotent. It is the unique idempotent in the 

H – class HY, P, in Jr corresponding to Y and P. 

Associated with a mapping α in Tn is a diagraph 

┌
→ (𝛼)whose vertices are labelled 1, 2, - - -, n and 

there is an edge 𝜄  ⟶    𝑗 if and only if 𝜄 𝛼 =  𝑗. Let 

𝛼 ∈  𝑇𝑛 , we define an equivalence relation w onXn 

by { ı, 𝑗   ∈   𝑋𝑛𝑥𝑋𝑛 ∶  ∃ 𝑟, 𝑠 ≥ 0  𝑖 𝛼𝑟 = 𝐽 𝛼𝑠   }. 

The w – classes are the connected components of 

┌
→ (𝛼) are called the orbitalsof 𝛼. Each orbit Ω has 

a Kernel K(Ω), defined by 𝐾 Ω = {𝑖 ∈  Ω ∶
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 ∃ 𝑟 > 0  𝑖 𝛼𝑟 = 𝑖}. To see that K(Ω) is not empty 

for each orbit(Ω), consider an element in 𝑖 𝑖𝑛 Ω. 

The elements 𝑖, 𝑖 𝛼, 𝑖,𝛼2 ,…. cannot be all distinct, 

and so there exist 𝑚 ≥ 0 and 𝑟 ≥ 1such that 

𝑖 𝛼𝑚+𝑟 = 𝑖 𝛼𝑚 . Thus 𝑖𝛼𝑚  ∈ 𝐾(Ω) 

An orbit OL is said to be standard if and only if 
 < 𝐾  Ω  <   Ω  |, acyclic is and only if 1 =

  𝐾 Ω  < | Ω |, cyclic if and only if 1 =
  𝐾  Ω  =   | Ω | 
Example 1. The map 

 𝛼 =

  1     2     3     4     5     6     7     8     9     10      11      12      13      14
3     3     4     5     6     4     6     9     10     10     12     13     11     14

  

In T14 has orbits Ω1 = 
 1, 2, 3, 4, 5, 6, 7 , Ω2 8, 9, 10 , Ω3{11, 12, 13, } and 

Ω4{14}. 

 

 
 

Figure 1:Orbits of 𝛼 ∈  𝑇14 

 

It is clear from these diagram in fig 1. That, 

𝐾 Ω1 =  4, 5, 6,  ,
𝐾 Ω2 =  10 ,𝐾 Ω3 = {11,
12, 13} 

and 𝐾 Ω4 = {14}, therefore 

Ω1 is standard since1 < | 𝐾  Ω1 < | Ω1  | 
Ω2 is acyclic since1 = | 𝐾  Ω2 < | Ω2  | 
Ω3 is cyclic since 1 < | 𝐾  Ω3 < | Ω3  | 
Ω4 is trivial since 1 = | 𝐾  Ω4 < | Ω4  | 
For each 𝛼 ∈  𝑇𝑛  we define the gravity of α 

(Howie, 1980) by 𝑔  𝛼  = 𝑛 + 𝑐  𝛼 − 𝑓(𝛼), 

where 𝐶(𝛼) is the number of cyclic orbits of α and 

f(α) is the number of acyclic orbits plus the number 

of trivial orbits of α 

 

III. MATERIAL AND METHODS 
3.1 Number of order – preserving full 

contractions  

This section is dedicated to finding an 

alternative method of obtaining the closed form 

formula for the number of idempotent elements in 

finite semigroup of full order -preserving 

contractions 

The method used involves enumerating 

the elements of order – preserving full contraction 

OCTn from the elements of order preserving 

semigroups denoted by OTn. We enumerate the 

elements of OCTn for small integers n = 1, 2, 3, 4 

according to the partitioning of OCTn into J – 

classes. Standard tools in combinatorics such as 

binomial coefficient, Pascal triangles and other 

known identities were used. We approached the 

counting of elements by analysing special cases, 

making observation and then proceeding in 

establishing our observation in the general cases. 

 

3.2 Enumeration of element in OCTn 

Since the semigroupOCTn is a subsemigroup of 

OTn. We obtain the elements of OCTn for small 

values of n = 1, 2, 3, 4 by only considering order – 

preserving contraction mappings. 

 

For n = 1 Table 1: Elements of height 1 in OCT1 

J1(OCT1) {1} 

1 
 

1

1
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   | OCT1|  =  | J1 (OCT1) |  = 1 

For n = 2 Table 2: Elements of height 2 in OCT2 

J1(OCT2) {1}  {2} 

1 2 
 

1 2

1
   

1 2

2
  

 

  Table 3: Elements of height 2 in OCT2 

J2(OCT2) {1, 2}  

1 / 2 
 

1 2

1 2
  

   

  | OCT2 | = | J1(OCT2 | + | J2(OCT2) | = 2 + 1 = 3 

 

For n = 3 Table 4: Elements of height 1 in OCT3 

J1(OCT3) {1}  {2} {3} 

1 2 3 
 

1 2 3

1
   

1 2 3

2
   

1 2 3

3
  

  

Table 5: Elements of height 2 in OCT3 

J2(OCT3) {1,2}  {1, 3} {2, 3} 

1 / 2 3 
 

1      23

1        2
  

 
 

1        23

2            3
  

12 / 3 
 

12      3

1        2
  

 
 

12      3

2        3
  

 

The empty cells in the table are those H – classes of OTn that contain no contraction mappings. This is also the 

case for all subsequent tables of the elements of OCTn. 

   

Table 6: Elements of height 3 in OCT3 

J3  (OCT3) {1, 2, 3}  

1/2/3 
 

1     2       3

 1      2       3 
  

 

  | OCT3 | = |J1(OCT3) |  +  | J2 (OCT3) |  + | J3 (OCT3) | 

  = 3 + 4 + 1 = 8 

 

For n = 4 Table 7: Elements of height 1 in OCT4 

J1(OCT4) {1}  {2} {3} {4} 

1 2 3 4 
 

1 2 3 4

1
   

1 2 3 4

2
   

1 2 3 4

3
   

1 2 3 4

4
  

 

Table 8: Elements of height 2 in OCT4 

J2(OCT4) {1, 2}  {1, 3} {1, 4} {2, 3} {2, 4} {3,4} 

1/ 2 3 4 
 

1      234

1          2
  

  
 

1   234

2       3
  

 
 

1   234

3         4
  

12 / 34 
 

1 2      34

1          2
  

  
 

12   3 4

2       3
  

 
 

12      34

3         4
  

123 / 4 
 

123      4

1           2
  

  
 

123     4

2           3
  

 
 

123     4

3         4
  

 

 

Table 9: Elements of height 3 in OCT4 

J3(OCT4) {1, 2, 3}  {1, 2, 4} {1, 3, 4} {2, 3, 4} 

1/ 2 /3 4 
 

1   2    34

1    2       3
  

  
 

1   2     34

2    3       4
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1/23 /4 
 

1     23    4

1      2       3
  

  
 

1     23    4

2       3     4  
  

12/ 3 / 4 
 

12    3    4

1        2     3 
  

  
 

12     3     4

2        3     4 
  

 

 

Table 10: Elements of height 4 in OCT4 

J4 (OCT4) {1, 2, 3, 4} 

1 / 2 / 3 / 4 
 

1      2     3     4

1      2     3    4
  

  

 | OCT4 | = |J1 (OCT4) |  +   |J2 (OCT4 |  +  |J3 (OCT4) |  +  | J4 (OCT4) |  = 4 + 9 + 6 + 1 = 20 

 

IV. RESULT AND DISCUSSION IN𝑬(𝑶𝑪𝑻𝒏) 
From the last tables, we developed the following sequence of cardinalities of number of idempotent elements in 

OCTn for small values of n. thus; 

 

𝑛 1 2 3 4 

𝐸(𝑂𝐶𝑇𝑛) 1 3 6 10 

 

Theorem 1. Let  𝐸(𝑂𝐶𝑇𝑛) be the set of all idempotents in 𝑂𝐶𝑇𝑛 .Then 𝐸(𝑂𝐶T𝑛) =  𝑛+1
2
  

 

Proof:  We note that the number of idempotents of height 𝑟 in 𝑂𝐶𝑇𝑛equals to the number of possible choices of 

the kernel partition of the form 

 

{ 1,… ,𝑚 − 1 ,  𝑚 ,  𝑚 + 1 ,… , {𝑚 + 𝑟 + 1}{𝑚 + 𝑟,… ,𝑛}}. 

Then there are 𝑛 − 𝑟 + 1 of them. 

Now,𝐸 𝑂𝐶𝑇𝑛 =   (𝑛 − 𝑟 + 1)𝑛
𝑟=1  

 

=  𝑛

𝑛

𝑟=1

− 𝑟 +

𝑛

𝑟=1

 1

𝑛

𝑟=1

 

 

= 𝑛2 −
𝑛 + 1

2
+ 𝑛 

=
𝑛

2
(𝑛 + 1) 

 

=  
𝑛 + 1

2
  

 

Remark 1: The formula for the number of 

idempotent elements in 𝑂𝐶𝑇𝑛  have been previously 

found by Adeshola (2013), but proved via different 

method 

 

V. CONCLUSION AND 

RECOMMENDATION 
5.1 Conclusion 

We have shown that there  𝑛+1
2
 idempotent 

elements in 𝑇𝑛  .  Our method of computation is 

more simple and direct and has the advantage of 

calculating the number of elements of a given 

height in OCTn 

 

5.2 Recommendations 

We recommend that similar study to be extended to 

each of the following transformation semigroups: 

(1) The semigroup𝑂𝐶𝐼𝑛  consisting of all partial 

one-to-one order-preseving contraction 

mappings of Xn  

(2) The semigroupOCPn  consisting of all partial  

order-preseving contraction mappings of Xn  

(3) The semigroupCTn  consisting of all full 

contraction mappings of Xn  
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